672 research outputs found

    Stationary Wavelet Processing and Data Imputing in Myoelectric Pattern Recognition on a Low-Cost Embedded System

    Get PDF
    Pattern recognition-based decoding of surface electromyography allows for intuitive and flexible control of prostheses but comes at the cost of sensitivity to in-band noise and sensor faults. System robustness can be improved with wavelet-based signal processing and data imputing, but no attempt has been made to implement such algorithms on real-time, portable systems. The aim of this work was to investigate the feasibility of low-latency, wavelet-based processing and data imputing on an embedded device capable of controlling upper-arm prostheses. Nine able-bodied subjects performed Motion Tests while inducing transient disturbances. Additional investigation was performed on pre-recorded Motion Tests from 15 able-bodied subjects with simulated disturbances. Results from real-time tests were inconclusive, likely due to the low number of disturbance episodes, but simulated tests showed significant improvements in most metrics for both algorithms. However, both algorithms also showed reduced responsiveness during disturbance episodes. These results suggest wavelet-based processing and data imputing can be implemented in portable, real-time systems to potentially improve robustness to signal distortion in prosthetic devices with the caveat of reduced responsiveness for the typically short duration of signal disturbances. The trade-off between large-scale signal corruption robustness and system responsiveness warrants further studies in daily life activities

    Evaluation of computer-based target achievement tests for myoelectric control

    Get PDF
    Real-Time evaluation of novel prosthetic control schemes is critical for translational research on artificial limbs. Recently, two computer-based, real-Time evaluation tools, the target achievement control (TAC) test and the Fitts' law test (FLT), have been proposed to assess real-Time controllability. Whereas TAC tests provides an anthropomorphic visual representation of the limb at the cost of confusing visual feedback, FLT clarifies the current and target locations by simplified non-Anthropomorphic representations. Here, we investigated these two approaches and quantified differences in common performance metrics that can result from the chosen method of visual feedback. Ten able-bodied and one amputee subject performed target achievement tasks corresponding to the FLT and TAC test with equivalent indices of difficulty. Ablebodied subjects exhibited significantly (p <0.05) better completion rate, path efficiency, and overshoot when performing the FLT, although no significant difference was seen in throughput performance. The amputee subject showed significantly better performance in overshoot at the FLT, but showed no significant difference in completion rate, path efficiency, and throughput. Results from the FLT showed a strong linear relationship between the movement time and the index of difficulty (R2 D 0:96), whereas TAC test results showed no apparent linear relationship (R2 D 0:19). These results suggest that in relatively similar conditions, the confusing location of virtual limb representation used in the TAC test contributed to poorer performance. Establishing an understanding of the biases of various evaluation protocols is critical to the translation of research into clinical practice

    Chronic Use of a Sensitized Bionic Hand Does Not Remap the Sense of Touch

    Get PDF
    Electrical stimulation of tactile nerve fibers that innervated an amputated hand results in vivid sensations experienced at a specific location on the phantom hand, a phenomenon that can be leveraged to convey tactile feedback through bionic hands. Ideally, electrically evoked sensations would be experienced on the appropriate part of the hand: touch with the bionic index fingertip, for example, would elicit a sensation experienced on the index fingertip. However, the perceived locations of sensations are determined by the idiosyncratic position of the stimulating electrode in the nerve and thus are difficult to predict or control. This problem could be circumvented if perceived sensations shifted over time to become consistent with the position of the sensor that triggers them. We show that, after long-term use of a neuromusculoskeletal prosthesis that featured a mismatch between the sensor location and the resulting tactile experience, the perceived location of the touch did not change

    Roundabouts: Traffic Simulations of Connected and Automated Vehicles—A State of the Art

    Get PDF
    The paper deals with traffic simulation within roundabouts when both “connected and automated vehicles” (CAVs) and human-driven cars are present. The aim is to present the past, current and future research on CAVs running into roundabouts within the Cooperative, Connected and Automated Mobility (CCAM) framework. Both microscopic traffic simulations and virtual reality simulations by dynamic driving simulators will be considered. The paper is divided into five parts. At first, the literature is analysed using the Systematic Literature Review (SLR) methodology based on Scopus database. Secondly, the influence of CAVs on roundabout-specific design features and configuration is analysed. Gap-acceptance models used to define the capacity of the roundabout, one of its most important key performance indicators, are also presented. Third, the most common simulation software are described and analysed in terms of traffic demand implementation. Then the communication approaches and path management algorithms are studied. An example is proposed on the integration of microscopic traffic simulations and dynamic driving simulators virtual reality simulations. Finally, car following models suitable for roundabout traffic are discussed. There is still a gap between simulations and actual experience. There are reasonable doubts on how modelling and optimizing CAVs’ behaviour into roundabouts in view of CCAM. It seems that Cooperative, Connected and Automated Vehicles (CCAVs), more than simply Connected and Automated Vehicles (CAVs), could optimise traffic flow, safety and driving comfort within the roundabout. A very promising technology for traffic simulation within the roundabout seems the one based on dynamic driving simulators

    Explorations of Autonomous Prosthetic Grasping Via Proximity Vision and Deep Learning

    Get PDF
    The traumatic loss of a hand is usually followed by significant psychological, functional and rehabilitation challenges. Even though much progress has been reached in the past decades, the prosthetic challenge of restoring the human hand functionality is still far from being achieved. Autonomous prosthetic hands showed promising results and wide potential benefit, a benefit that must be still explored and deployed. Here, we hypothesized that a combination of a radar sensor and a low-resolution time-of-flight camera can be sufficient for object recognition in both static and dynamic scenarios. To test this hypothesis, we analyzed via deep learning algorithms HANDdata, a human-object interaction dataset with particular focus on reach-to-grasp actions. Inference testing was also performed on unseen data purposely acquired. The analyses reported here, broken down to gradually increasing levels of complexity, showed a great potential of using such proximity sensors as alternative or complementary solution to standard camera-based systems. In particular, integrated and low-power radar can be a potential key technology for next generation intelligent and autonomous prostheses

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations with Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent 'electric' or 'tingling' character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency ('patterned stimulation'). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation

    Low-Cost, Wireless Bioelectric Signal Acquisition and Classification Platform

    Get PDF
    Bioelectric signal classification is a flourishing area of biomedical research, however conducting this research in a clinical setting can be difficult to achieve. The lack of inexpensive acquisition hardware can limit researchers from collecting and working with real-time data. Furthermore, hardware requiring direct connection to a computer can impose restrictions on typically mobile clinical settings for data collection. Here, we present an open-source ADS1299-based bioelectric signal acquisition system with wireless capability suitable for mobile data collection in clinical settings. This system is based on the ADS_BP and BioPatRec, both open-source bioelectric signal acquisition hardware and MATLAB-based pattern recognition software, respectively. We provide 3D-printable housing enabling the hardware to be worn by users during experiments and demonstrate the suitability of this platform for real-time signal acquisition and classification. In conjunction, these developments provide a unified hardware-software platform for a cost of around 150 USD. This device can enable researchers and clinicians to record bioelectric signals from non-disabled or motor-impaired individuals in laboratory or clinical settings, and to perform offline or real-time intent classification for the control of robotic and virtual devices

    Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand

    Get PDF
    Background: Replacement of a lost limb by an artificial substitute is not yet ideal. Resolution and coordination of motor control approximating that of a biological limb could dramatically improve the functionality of prosthetic devices, and thus reduce the gap towards a suitable limb replacement. Methods: In this study, we investigated the control resolution and coordination exhibited by subjects with transhumeral amputation who were implanted with epimysial electrodes and an osseointegrated interface that provides bidirectional communication in addition to skeletal attachment (e-OPRA Implant System). We assessed control resolution and coordination in the context of routine and delicate grasping using the Pick and Lift and the Virtual Eggs Tests. Performance when utilizing implanted electrodes was compared with the standard-of-care technology for myoelectric prostheses, namely surface electrodes. Results: Results showed that implanted electrodes provide superior controllability over the prosthetic terminal device compared to conventional surface electrodes. Significant improvements were found in the control of the grip force and its reliability during object transfer. However, these improvements failed to increase motor coordination, and surprisingly decreased the temporal correlation between grip and load forces observed with surface electrodes. We found that despite being more functional and reliable, prosthetic control via implanted electrodes still depended highly on visual feedback. Conclusions: Our findings indicate that incidental sensory feedback (visual, auditory, and osseoperceptive in this case) is insufficient for restoring natural grasp behavior in amputees, and support the idea that supplemental tactile sensory feedback is needed to learn and maintain the motor tasks internal model, which could ultimately restore natural grasp behavior in subjects using prosthetic hands

    Assessment of an automatic prosthetic elbow control strategy using residual limb motion for transhumeral amputated individuals with socket or osseointegrated prostheses

    Get PDF
    International audienceMost transhumeral amputated individuals deplore the lack of functionality of their prosthesis due to control-related limitations. Commercialized prosthetic elbows are controlled via myoelectric signals, yielding complex control schemes when users have to control an entire prosthetic limb. Limited control yields the development of compensatory strategies. An alternative control strategy associates residual limb motions to automatize the prosthetic elbow motion using a model of physiological shoulder/elbow synergies. Preliminary studies have shown that elbow motion could be predicted from residual limb kinematic measurements, but results with transhumeral amputated individuals were lacking. This study focuses on the experimental assessment of automatic prosthetic elbow control during a reaching task, compared to conventional myoelectric control, with six transhumeral amputated individuals, among whom, three had an osseointegrated device. Part of the recruited participants had an osseointegrated prosthetic device. The task was achieved within physiological precision errors with both control modes. Automatic elbow control reduced trunk compensations, and restored a physiologically-like shoulder/elbow movement synchronization. However, the kinematic assessment showed that amputation and prosthesis wear modifies the shoulder movements in comparison with physiological shoulder kinematics. Overall, participants described the automatic elbow control strategy as intuitive, and this work highlights the interest of automatized prosthetic elbow motion

    Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium

    Full text link
    Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (the quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.Comment: 9 pages, 4 ps figure
    • 

    corecore